반응형

손글씨 5

Keras를 이용한 CNN, 손글씨 인식 소스 코드

import keras from keras import models, layers from keras import backend from keras import datasets batch_size = 128 epochs = 10 num_classes = 10 #데이터 로딩 (x_train, y_train), (x_test, y_test) = datasets.mnist.load_data() img_rows, img_cols = x_train.shape[1:] if backend.image_data_format() == 'channels_first': x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols) x_test = x_test.resha..

Keras를 이용한 딥러닝 시작, ANN-DNN, 손글씨 인식시키기

#데이터 로딩 import numpy as np from keras import datasets data_train,data_test = datasets.mnist.load_data() image_train, label_train = data_train image_test, label_test = data_test #데이터 정제화 from keras.utils import np_utils label_train2 = np_utils.to_categorical(label_train) print(label_test[0]) label_test2 = np_utils.to_categorical(label_test) print(label_test2[0]) length,weight,height = image_train..

머신러닝 및 딥러닝에 사용하는 손글씨 데이터 mnist 다운로드 및 구조 분석하기

#mnist 다운로드 및 분석 import numpy as np from keras import datasets data_train,data_test = datasets.mnist.load_data() image_train, label_train = data_train image_test, label_test = data_test print("image_train의 구조:",image_train.shape) print("label_train의 구조:",label_train.shape) print("image_test의 구조:",image_test.shape) print("label_test의 구조:",label_test.shape) colcnt = len(image_train[0]) rowcnt = le..

나의 손글씨 데이터로 머신 러닝시킨 후 나의 손글씨로 테스트하기 with 사이킷 런 svm.SVC

소스 코드 #손글씨 파일 위치: https://k.kakaocdn.net/dn/8iBYV/btqEn8soGlt/EqRKeRjvBIbPyxXenOEWVk/Handwriting.zip?attach=1&knm=tfile.zip import pandas as pd from sklearn import svm, metrics def read_data(fname): mr = pd.read_csv(fname,header=None) label=[] data=[] for row_index,row in mr.iterrows(): label.append(row.loc[400]) other_data=[] for v in row.loc[0:399]: other_data.append(v) data.append(other_data)..

반응형